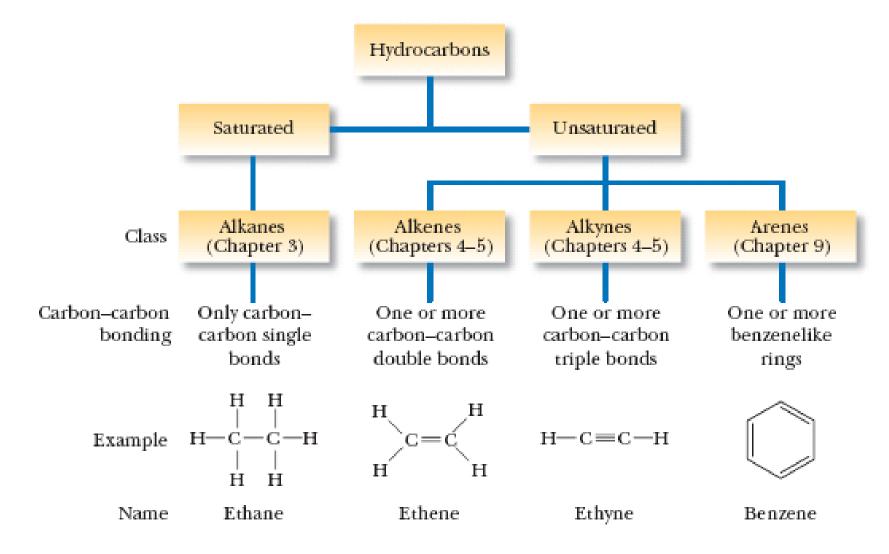
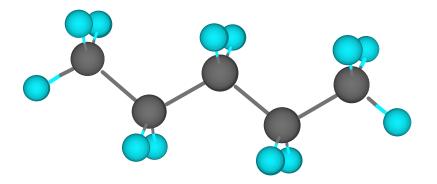


BP202TP


Chapter Three Alkanes and Cycloalkanes

Prepared by:
Ms. Krutika Poshiya
Assistant Professor
M.Pharm

Organic Chemistry

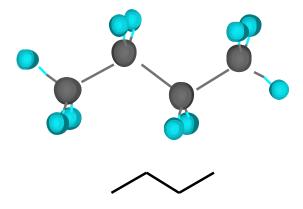


Structure

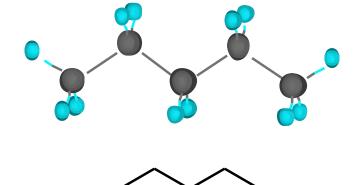
- Hydrocarbon: A compound composed only of carbon and hydrogen.
- Saturated hydrocarbon: A hydrocarbon containing only single bonds.
- Alkane: A saturated hydrocarbon whose carbons are arranged in a open chain.
- Aliphatic hydrocarbon: Another name for an alkane.

Structure

- Shape
 - Tetrahedral about carbon.
 - All bond angles are approximately 109.5°.



Representing Alkanes


- Line-angle formula
 - Each line represents a single bond.
 - Each line ending represents a CH₃ group.
 - Each vertex (angle) represents a carbon atom.

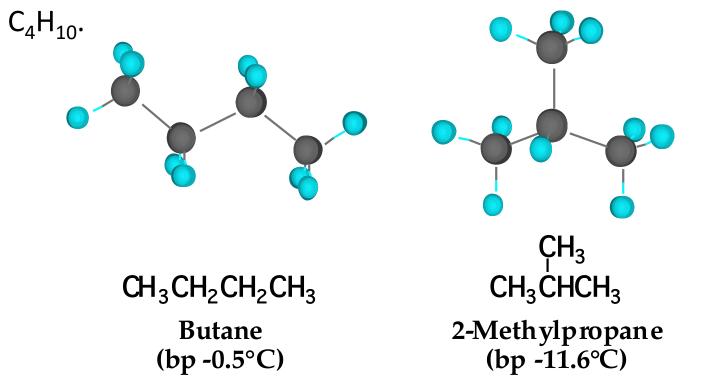
Ball-and-stick model

Line-angle formula
Structural formula

CH₃CH₂CH₂CH₃
Butane

CH₃CH₂CH₂CH₃ Pentane

Alkanes

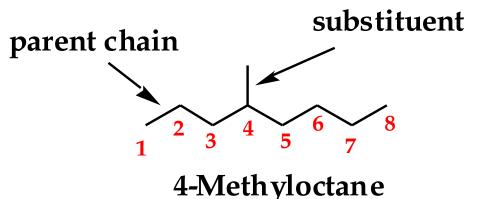

- Alkanes have the general formula C_nH_{2n+2}
 - Names of unbranched alkanes with 1 to 20 carbon atoms.

Name	Molecular Formula	Name	Molecular Formula
methane	CH ₄	nonane	C_9H_{20}
ethane	C_2H_6	decane	$C_{10}H_{22}$
propane	C_3H_8	dodecane	$C_{12}H_{26}$
butane	C_4H_{10}	tetrad ecane	$C_{14}H_{30}$
pentane	C_5H_{12}	hexadecane	$C_{16}H_{34}$
hexane	C_6H_{14}	octadecane	$C_{18}H_{38}$
heptane	C_7H_{16}	eicosane	$C_{20}H_{42}$
octane	C ₈ H ₁₈		

Constitutional Isomers

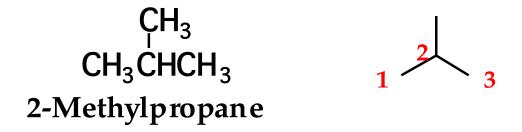
 Constitutional isomers: Compounds with the same molecular formula but a different connectivity of their atoms.

• There are two constitutional isomers with molecular formula

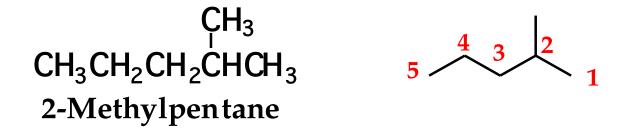


• The potential for constitutional isomerism is enormous.

Molecular Formula	Constitutional Isomers	
CH ₄	1	World population
C_5H_{12}	3	is about 6,000,000,000
$C_{10}H_{22}$	75	6,000,000,000
$C_{15}H_{32}$	4,347	
$C_{25}H_{52}$	36,797,588	
C ₃₀ H ₆₂	4,111,846,763	_

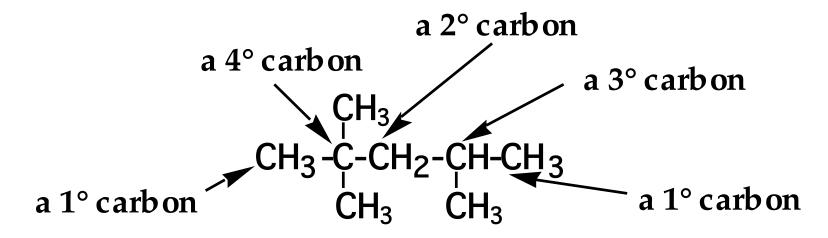

Nomenclature

- Parent name The longest carbon chain.
- Substituent: A group bonded to the parent chain.
 - Alkyl group: A substituent derived by removal of a hydrogen from an alkane; given the symbol R-.
 - CH₄ becomes CH₃- (methyl).
 - CH₃CH₃ becomes CH₃CH₂- (ethyl).



Nomenclature

- 1.The name of an alkane with an unbranched chain consists of a prefix and the suffix ane.
- 2. For branched alkanes, the parent chain is the longest chain of carbon atoms.
- 3. Each substituent is given a name and a number.

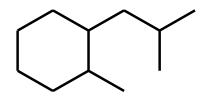


4. If there is one substituent, number the chain from the end that gives it the lower number.

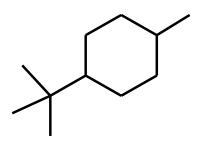
Classification of Carbons

- Primary(1°): a C bonded to one other carbon.
- Secondary(2): a C bonded to two other carbons.
- Tertiary(3°): a C bonded to three other carbons.
- Quaternary(4°): a C bonded to four other carbons.

2,2,4-Trimethylpentane


Cycloalkanes

- General formula C_nH_{2n}
 - Five- and six-membered rings are the most common.
- Structure and nomenclature
 - To name, prefix the name of the corresponding open-chain alkane with cyclo-, and name each substituent on the ring.
 - If there is only one substituent, no need to give it a number.
 - If there are two substituents, number from the substituent of lower alphabetical order.
 - If there are three or more substituents, number to give them the lowest set of numbers, and then list substituents in alphabetical order.


Cycloalkanes

- Commonly written as line-angle formulas
 - examples:


Isopropylcyclopentane

1-Isobutyl-2-methyl-cyclohexane

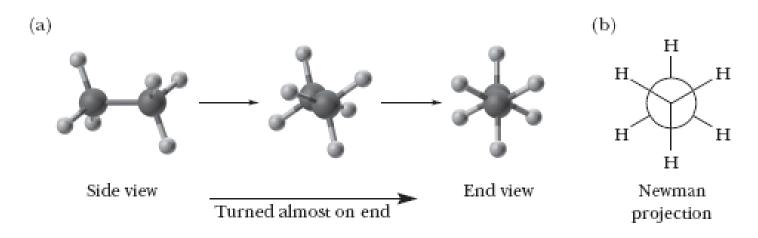
1-tert-Butyl-4-methyl-cyclohexane

1-Ethyl-1-methyl-cyclopropane

A General System

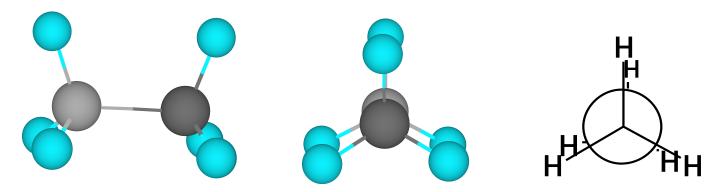
- prefix-infix-suffix
 - Prefix tells the number of carbon atoms in the parent.
 - Infix tells the nature of the carbon-carbon bonds.
 - Suffix tells the class of compound.

Infix	Nature of Carbon–Carbon Bonds in the Parent Chain
-an-	all single bonds
-en-	one or more double bonds
-yn-	one or more triple bonds

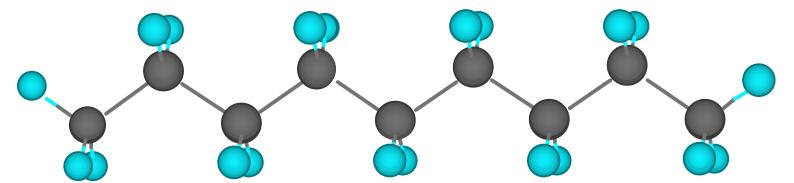

Suffix	Class of Compound	
-e	hydrocarbon	
-ol	alcohol	
-al	aldehyde	
-one	ketone	
-oic acid	carboxylic acid	

A general system

prop-en-e = propene
eth-an-ol = ethanol
but-an-one = butanone
but-an-oic acid = pentanoic acid
cyclohex-an-ol = cyclohexanol
eth-yn-e = ethyne
eth-an-amine = ethanamine


Conformation

- Conformation: Any three-dimensional arrangement of atoms in a molecule that results from rotation about a single bond.
 - Staggered conformation: A conformation about a carboncarbon single bond where the atoms on one carbon are as far apart as possible from the atoms on an adjacent carbon. On the right is a Newman projection formula.



Conformation

• Eclipsed conformation: A conformation about a carbon-carbon single bond in which the atoms on one carbon are as close as possible to the atoms on an adjacent carbon.

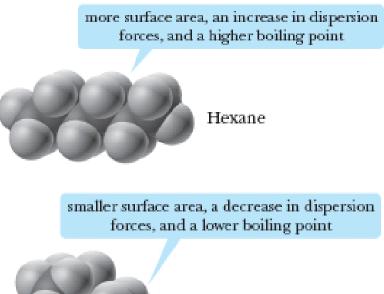
• The lowest energy conformation of an alkane is a fully staggered conformation.

Physical Properties

Boiling point

- Low-molecular-weight alkanes (1 to 4 carbons) are gases at room temperature; e.g., methane, propane, butane.
- Higher-molecular-weight alkanes (5 to 17 carbons) are liquids at room temperature (e.g., hexane, decane, gasoline, kerosene).
- High-molecular-weight alkanes (18 or more carbons) are white, waxy semisolids or solids at room temperature (e.g., paraffin wax).

Density


- Average density is about 0.7 g/mL.
- Liquid and solid alkanes float on water.

Physical Properties

 Constitutional isomers are different compounds and have different physical properties.

TABLE 3.5 Physical Properties of the Isomeric Alkanes with the Molecular Formula C₆H₁₄

Name	Melting Point (°C)	Boiling Point (°C)	Density (g/mL)
hexane	-95	69	0.659
3-methylpentane	-6	64	0.664
2-methylpentane	-23	62	0.653
2,3-dimethylbutane	-129	58	0.662
2,2-dimethylbutane	-100	50	0.649

2,2-Dimethylbutane

Reactions of Alkanes

- Oxidation is the basis for the use of alkanes as energy sources for heat and power.
 - Heat of combustion: the heat released when one mole of a substance is oxidized to carbon dioxide and water.

```
CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O \qquad \Delta H^\circ = -886 \text{ kJ/mol } (-212 \text{ kcal/mol}) Methane CH_3CH_2CH_3 + 5O_2 \longrightarrow 3CO_2 + 4H_2O \qquad \Delta H^\circ = -2,220 \text{ kJ/mol } (-530 \text{ kcal/mol}) Propane
```