Pharmaceutical analysis I

BP102TP

COMPLEXOMETRIC TITRATION

Prepared By: Ms.Komal Patel Assistant Professor Mpharm(phd Pursuing)

Complexometric titrations

Complexometry

• A titration based on the formation of a coordination complex is known as a complexometric titration.

> Complex formation titrations are used to titrate cations via complex formation reagents.

➢ Most, if not all, metals form coordination complexes with anions or molecules. For example,

 $Fe^{2+} + 6 CN^{1-}$ $Fe(CN)_6^{4-}$

Molecules/anions that react with metal ions must donate an unshared pair of electrons to form a coordinate covalent bond

• Molecules composed of metals and chelates or metals and coordinating agents are known as coordination complexes.

Chelating agents form strong 1:1 complexes with metal ions.

• Most common chelating agents belong to a group of compounds called polyaminocarboxylic acids.

The complex can form only when...

1. The central atom *(a metal ion (or cation) in a complex)* accepts an electron pair from one or more ligands *(ligand = electron-pair donating species)*.

2. The ligand possesses at least one electron pair to donate.

3. The bonding (coordinate covalent bonding) occurs .

A number of common anionic and molecular ligands can form complexes:

1. Anionic ligands include halides, SCN¹⁻, CN¹⁻, OH¹⁻, RCOO¹⁻, S²⁻, C₂O₄²⁻ (oxalate), etc.

2. Molecular ligands include water, ammonia, RNH_2 (amines) C_5H_5N (pyridine) $H_2NCH_2CH_2NH_2$ (ethlenediamine), etc.

Ligands that have (or share) only one electron pair are called unidentate.

1. "Dentate" = a tooth-like projection.

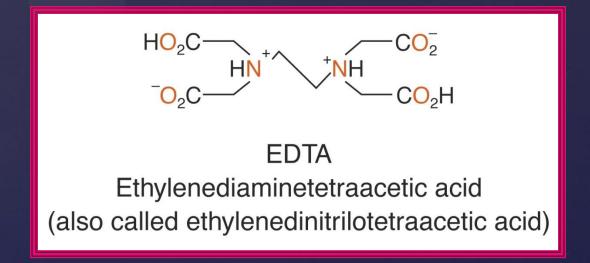
2. For example, ammonia is unidentate...

 $Cu^{2+} + 4 NH_3 Cu(NH_3)_4^{2+}$

Bidentate ligands share two electron pairs. Examples:

1. Glycine complexed with copper(II).

2. Ethylenediamine complexed with zinc ion.


Multidentate ligands complexed to metal ions are called chelates. Chelates always have a "chelate ring." For example, the zinc-8-hydroxyquinolate complex.

Complex Formation Titrations

The most commonly used chelon (or titrant) in metal ion titrations is EDTA (ethylenediaminetetracetic acid).

EDTA

- Ethylene diamine tetraacetic acid. $H_4EDTA => H_4Y$
- > ethylenediaminetetraacetate anion
- $\Rightarrow EDTA^{-4} \Longrightarrow Y^{-4}$

EDTA is hexadentate, donating one electron pair from each of the two amine group and one electron pair from each of the four carboxylates to the bound metal ion.

• Virtually every element in the periodic table can be determined by titrating with EDTA.

• EDTA forms a "cage" around metal ions, like a spider grasping a fly.

• Note that only the fully ionized, -4-charged anion binds to metal ions.

• Competition of the metal ion with protons dictates that the solution must be well buffered.

EDTA is used as a titrant for the determination of water hardness.

•EDTA is a tetraprotic acid,

Standard solutions of EDTA are usually prepared by dissolving the $Na_2H_2Y2H_2O$ in a volumetric flask. (Note: Most $Na_2H_2Y2H_2O$ at normal, atmospheric conditions comes with 0.3% excess water in the crystal. The excess water must be taken into account when preparing standard solutions.)

Colorimetric indicators

• Also known as metallochromic indicators.

• The color change occurs when the metal ion is bound with the indicator.

• This binding is pH dependent.

• Masking agents are often used for complexometric titrations, which allow for the removal of interferents.

Metal Ion Indicators

• Over 200 organic compounds form colored chelates with ions in a pM range that is unique to the cation and the dye selected.

• To be useful, the dye-metal chelates usually will be visible at 10⁻⁶-10⁻⁷ M concentration.

The dye is selected such that the color change corresponds to the pM at equivalence.

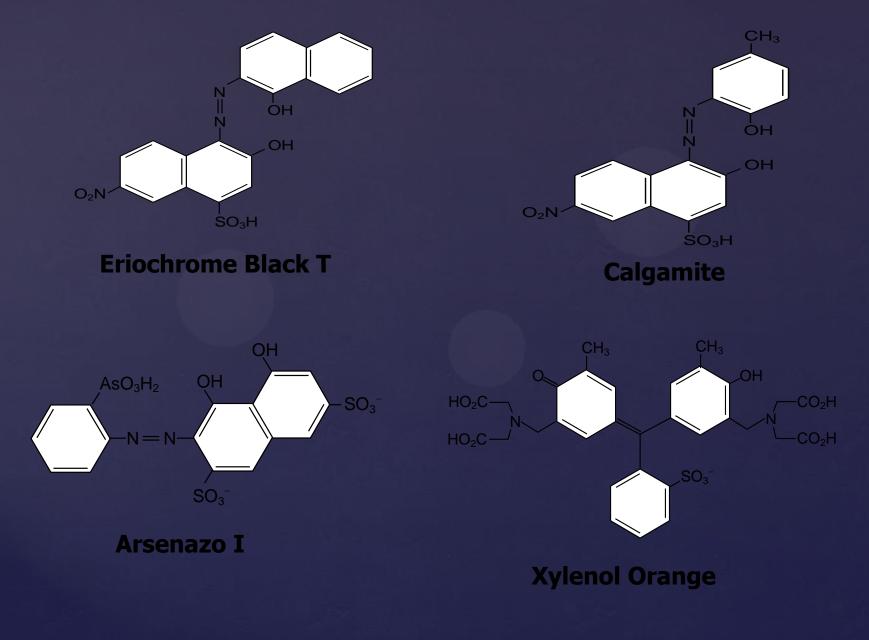
Examples:

Erichrome Black T

• Eriochrome Black T is an azo dye, best used with Mg²⁺ and Zn²⁺ titrations.

• Excess EDTA causes a red to blue color change at near neutral pH.

• Eriochrome Black solutions decompose easily.


MgIn+EDTA \rightarrow MgEDTA+In(red)(colorless)(blue)

Calmagite/calgamite

• Similar in structure to Eriochrome Black but does not decompose as easily.

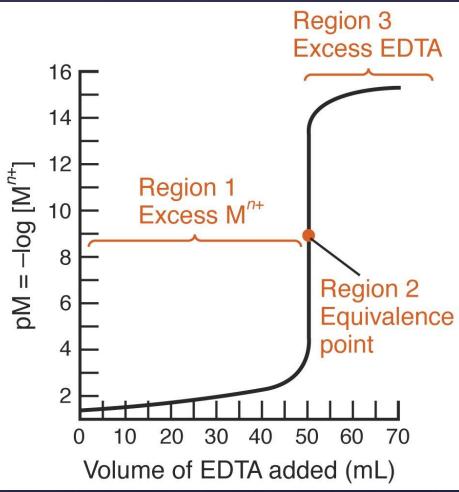
• Similar color behavior to Eriochrome Black and more stable.

Common indicators for complexometric titrations

EDTA Titration

EDTA combined with the metal ion (1 : 1) to form complex.

For a +1 cation: $Ag^+ + Y^{4-} \rightarrow Ag Y^{3-}$ For a +2 cation: $Hg^{2+} + Y^{4-} \rightarrow Hg Y^{2-}$ For a +3 cation: $Fe^{3+} + Y^{4-} \rightarrow Fe Y^{-}$ For a + n ion: $M^{n+} + Y^{4-} \rightarrow MY^{(n-4)+}$


The Formation Constant,

$$K_{MY} = \frac{\left[MY^{(n-4)+}\right]}{\left[M\right]\left[Y^{4-}\right]}$$

Three Regions of EDTA Titration

The curves are easily calculated by dividing the curve up into domains:

- •The pM before equivalence.
- The pM at equivalence.
- •The pM after equivalence.

EDTA Titration Techniques

Direct Titration

- Many metals can be determined by direct titrations with EDTA.
- Weak metal complexes such as Ca²⁺ and Mg²⁺ should be titrated in basic solution using EBT, Calmagite, or Arsenazo I as the indicator.

example

A 100.0 mL drinking water containing Ca²⁺ was treated with ammoniaammonium chloride buffer solution to give pH about 10.0. Calgamite indicator was added and the solution was titrated with 0.0050 M EDTA. It required 23.50 mL of the titrant to achieve the end point. Calculate the water hardness in terms of ppm calcium?

EDTA Titration Techniques

Back Titration

• Back titration can be performed for the determinition of several metal ions can not be titrated directly but form stable EDTA complexes.

• The procedure, a known amount of EDTA is added to the analyte sample solution and the excess is back titrated with a standard solution of "weak" metal ion, Mg²⁺.

The weak metal ion will not displace the analyte from its EDTA complex.

• Calgamite can be used as an indicator for the back titration of the excess EDTA with standard magnesium ion solution.

Example

A 20.00 mL of a solution containing Hg2+ in dilute nitric acid was treated with 10.00 mL of 0.0500 M EDTA and the solution was added with ammoniaammonium chloride buffer solution to a give pH of **10. A few drops of freshly prepared EBT indicator** was added and the excess EDTA was back titrated with 0.0100 M Mg2+. It required 25.50 mL of the titrant to reach the end point. Calculate the molariy of Hg2+ in the sample.

Displacement Titration

 MgY²⁻ or ZnY²⁻ complex is added to the solution of unknown metal ion composition.

• The unknown metal displaces the Mg²⁺ or Zn²⁺, which is then back titrated.

• The technique only works when the unknown metal has tighter binding to EDTA than the Zn²⁺ or Mg²⁺.