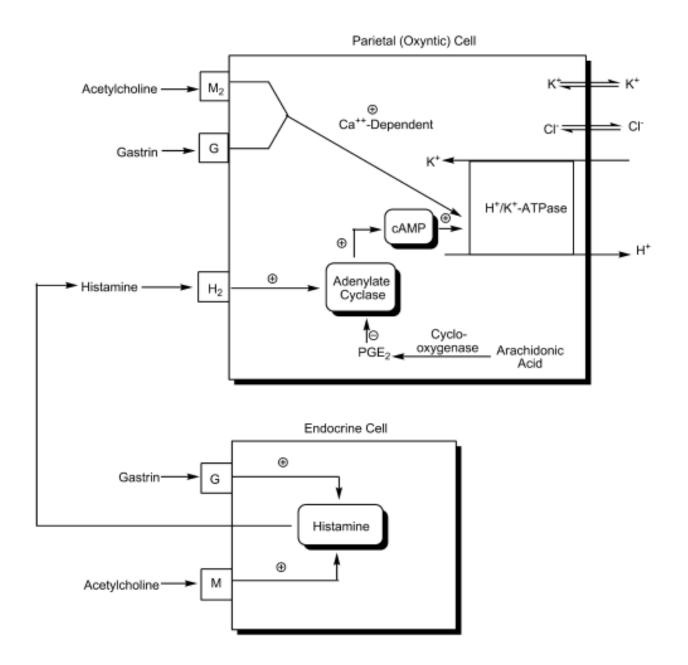


HISTAMINE H₂-ANTAGONIST

Navneet F. Chauhan, Ph.D Associate Professor, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar


HISTAMINE H₂-ANTAGONISTS

- Drugs whose pharmacological action primarily involves antagonism of the action of histamine at its H₂-receptors.
- Therapeutic application in the treatment of acid-peptic disorders including heartburn, gastroesophageal reflux disease (GERD), erosive esophagitis, gastric and duodenal ulcers, and gastric acid pathologic hypersecretory diseases such as Zollinger-Ellison syndrome.
- They are also useful in combination with H_1 -antihistamines for the treatment of chronic urticaria and for the itching of anaphylaxis and pruritis.
- Classification of H₂-Antagonist
 - a) Imidazole ring analogue (Cimetidine)
 - b) Furan ring analogue (Ranitidine)
 - c) Thiazole ring analogue (Famotidine & Nizatidine)

SAR of H₂-Antagonist

37 tit of 112 7 titagoriist	
Histamine: Nonselective histamine receptor agonist (H ₁ = H ₂)	H ₂ C—CH ₂ NH ₂
5-Methylhistamine: Selective H_{2} -agonist ($H_{2} > H_{1}$)	H NH2
	H ₂ C — CH ₂
N°-Guanylhistamine: Partial H ₂ -receptor agonist (weak antagonist)	H ₂ C—CH ₂ NH ₂
Burimamide: Full H ₂ -receptor antagonist; but low potency and poor oral bioavailability	H ₂ C—CH ₂ s
	H NHCH ₃
Metiamide: Full H ₂ -receptor antagonist with higher potency and improved oral bioavailability; but toxicity resulting from the thiourea	H ₂ C — CH ₂ S N— C NHCH ₃
Cimetidine: Full H ₂ -receptor antagonist with higher potency and improved oral bioavailability and low systemic toxicity	H_3C H_2C S CH_2-CH_2 N

Hormonal Regulation of Acid Secretion by Parietal Cell

Synthesis of Cimetidine

4-(2-aminomethyl)-thiomethyl-5-methylimidazol

thiourea derivative

IUPAC Name:

1-cyano-2-methyl-3-[2-[[5-[[methylimidazol-4-yl)methyl]thio]ethyl] guanidine

Structures of H₂-Receptor Antagonist

$$C = N$$
 $C = N$
 C

Cimetidine exhibits relatively good bioavailability (60% - 70%)
Side Effect: Cimetidine has a weak antiandrogenic effect, and it may cause gynecomastia in patients treated for 1 month or more.

$$H_2N$$
 $N \longrightarrow SO_2NH_2$
 $N \longrightarrow NH_2$
 $N \longrightarrow SO_2NH_2$
 $N \longrightarrow SO_2NH_2$
 $N \longrightarrow SO_2NH_2$
 $N \longrightarrow SO_2NH_2$

Famotidine is a competitive inhibitor of histamine H_2 -receptors with a potency significantly greater than cimetidine.

Nizatidine has excellent oral bioavailability (90%). Nizatidine is more potent than Cimetidine

IUPAC Name:

N-[2-[[[5-(dimethylamino)methyl]-2-furanyl]methyl]thiol]ethyl]-N-methyl-2-nitro-1,1 ethenediamine

Ranitidine is more potent than cimetidine, but less potent than famotidine. Like other H₂-antagonists, it does not appear to bind to other receptors.