HISTAMINE AND ANTIHISTAMINIC AGENTS

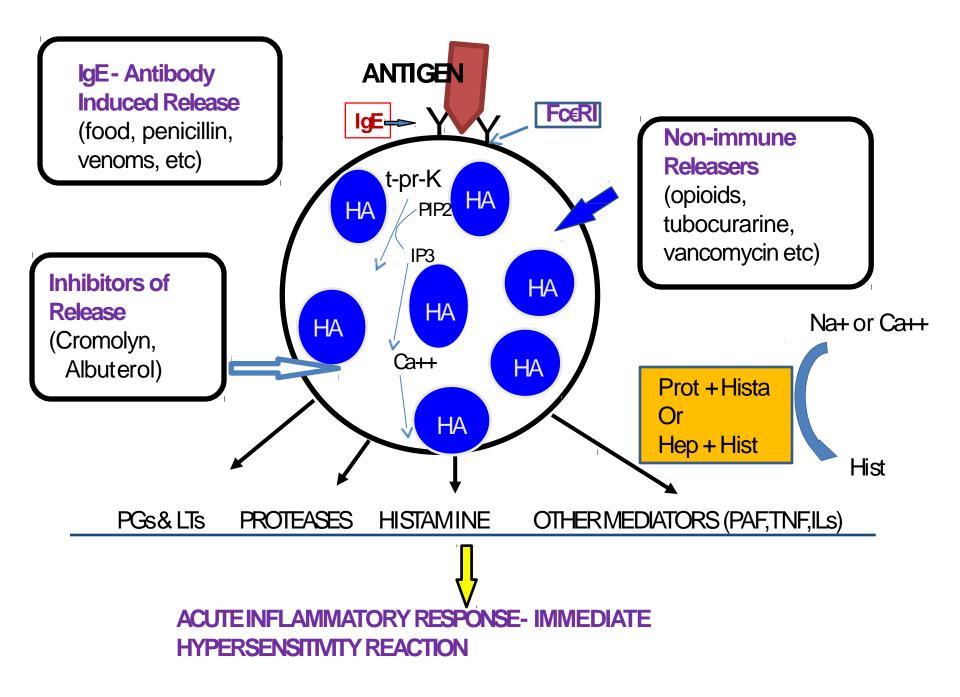
Mr. Ravi R. Thakar

Assistant Professor Saraswati Institute of Pharmaceutical Sciences Gujarat, India - 382355

Autacoids

- Greek: autos self and akos healing substance or remedy
- Diverse substances, produced by a wide variety of cells – generally act locally
- Also called local hormones but differs from them
- Anumber of Physiological and pathological processes and also transmitters to Nervous system
- Amine Autacoids: Histamine and Serotonin
- Lipid derived: PG, LT and PAF
- Peptides: Plasma kinins and Angiotensin

Histamine - Introduction


- Meaning "tissue amine" (*histos* tissue) abundantly present in animal tissues – also in plants like "stinging nettle"
- Mediator of hypersensitivity and tissue potential tissue injury – Physiological role
- The primary site the mast cell granules (or basophils) skin, intestinal and gastric mucosa, lungs, liver and placenta
- Other sites
 - central nervous system: neurotransmitter
 - the fundus of the stomach: major acid secretagogues, epidermis, gastric mucosa and growing regions
 - also blood, body secretions, venoms & pathological fluids

Histamine – synthesis, storage and release

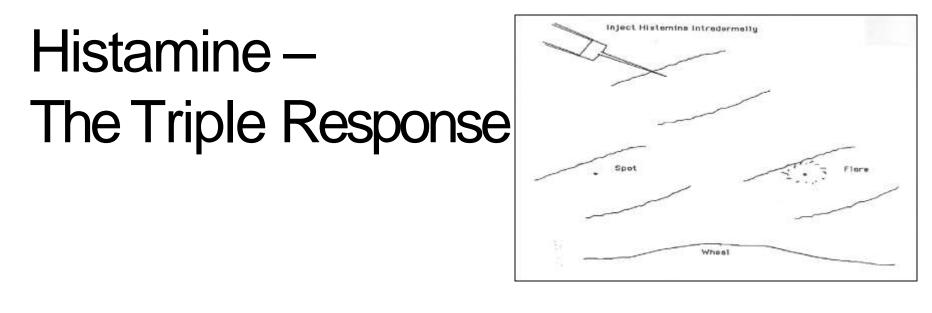
- Synthesized locally from amino acid histidine
- Histidine <u>L-histidine decarboxylase</u> Histamine
- Metabolized by P450 system, 2 pathways:
 - Methylation to N-me histamine (*N-me transferase*), and to N-me imidazole acetic acid (*MAO*) eliminated in urine
 - Oxidative deamination to imidazole acetic acid (DAO), and to imidazole acetic acid riboside - eliminated in urine
- In mast cells held by acidic protein and heparin (-ve charged) histamine is +ve charged
- Ineffective orally liver destroys all absorbedfrom intestine

Histamine Receptors

	H1	H ₂	H3
Selective agonist	2-Methylhistamine	4-Methylhistamine	α-Methylhistamine
Selective antagonist	Mepyramine	Cimetidine Ranitidine	Thioperamide
Effector Pathway	IP3/DAG	cAMP	Ca++ influx K+ channel activation
Distribution	•Smooth muscle (intestine,	•Gastric glands – acid	•Brain – inhibition oh
	airway, uterus	secretion	Histamine release
	 Blood vessels – NO and 	 Blood vessels – 	 Lung, spleen, gatric
	PGI2 release –	dilatation	mucosa – decrease
	Vasodilatation and also	•Heart: Atria: +	release
	vasoconstriction	chronotropy and	•lleum – inhibition of
	• Afferent nerves –	ventricles: + inotropy	Ach release
	stimulation	•Uterus – relaxation	 Cerebral vessels – NA
	 Ganglion cells – stimulation 	 Brain - transmitter 	release inhibition
	•Adrenal medulla – CA		
	release		
	 Brain - transmitter 		

Releasing Agents

IgE - Mediated Releasers


- Food: eggs, peanuts, milk products, grains, strawberries, etc
- Drugs: penicillins, sulfonamides, etc
- Venoms: fire ants, snake, bee, etc
- Foreign proteins: nonhuman insulin, serum proteins, etc
- Enzymes: chymopapain

Non-immune Releasers

- Morphine and other opioids, i.v.
- Aspirin and other NSAIDs in some asthmatics
- Vancomycin, i.v. (Red man syndrome), polymixin B
- Some x-ray contrast media
- Succinylcholine, dtubocurarine
- Anaphylotoxins: c3a, c5a
- Cold or solar urticaria

Histamine - Pharmacological actions

- Blood vessels: Dilatation of small vessels arterioles, capillaries and venules
 - SCadministration flushing, heat, increased HR and CO– little fall in BP
 - Rapid IV injection: Fall in BPearly (H1) and persistent (H2) only H1 effect with low dose
 - Dilatation of cranial vessels
 - H1 component vasodilatation mediated indirectly by EDRF.. But H2 component - mediation is directly on smooth muscle of blood vessels
 - Larger arteries and veins constriction mediated by H1 receptor
 - Increased capillary permeability exudation of plasma

Subdermal histamine injection causes:

- 1. Red spot (few mm) in seconds: direct vasodilation effect, H1 receptor mediated
- 2. Flare (1cm beyond site): axonal reflexes, indirect vasodilation, and itching, H1 receptor mediated
- 3. Wheal (1-2 min) same area as original spot, edema due to increased capillary permeability, H1 receptor mediated

Pharmacological actions - Heart

• Affects both cardiac contractility and electrical events directly

- It increases the force of contraction of both atrial and ventricular muscle by promoting the influx of Ca^{2+} , and
- Increased heart rate by hastening diastolic depolarization in the sinoatrial (SA) node

• It also acts directly to slow atrioventricular (AV) conduction, to increase automaticity, and in high doses especially - to elicit arrhythmias.

• With the exception of slowed AV conduction, which involves mainly H_1 receptors ----- all these effects are largely attributable to H_2 receptors and cAMP accumulation

• If histamine is given i.v., direct cardiac effects of histamine are overshadowed by baroreceptor reflexes elicited by the reduced blood pressure

• Overall: H_1 – decreased AV conduction; H_2 - Increased Chronotropy and automaticity

Pharmacological actions – contd.

- Visceral smooth muscles: Bronchoconstriction, intestinal contractions increased (colic), Uterus not affected
- Glands: Gastric secretion (also pepsin) H₂ receptor mediated – cAMP generation and proton pump activation
- Sensory Nerve endings: Itching on injected; High doses pain
- Autonomic ganglia and Adrenal Medulla: Adrenaline release As a result rise in Blood Pressure
- CNS: Does not cross BBB no CNS effects on IV
 - intracerebral injection: Rise in BP, Cardiac stimulation, hypothermia, arousal, vomiting

Histamine - Pathophysiological Roles

- Gastric Secretion: Dominant Physiological Role Non-mast cell histamines – Gastric mucosa
 - All components involve to release it feeding, vagal, cholinergic and gastrin
 - H₂ blockers Suppress the release antimuscarinics reduce the effects of Histamine
 - Allergic Phenomena: First Role mediation of hypersensitivity reactions
 - AG:AB reactions released by mast cells involving IgE types
 - Urticaria, angioedema, brochoconstriction and anaphylactic reaction
 - Antihistaminics counter above effects except Brochial asthma
 - Transmitter: Afferent transmitter itch and pain

*

*

Non-mast cell histamines - maintain wakefulness (midbrain and hypothalumus) ... antihistaminics cause sedation) also suppress appetite, regulates body temperature, thirst and hormone release from anterior pituitary

Inflammation: Vasodilatation in inflammation and adhesion of leucocytes

H1-RECEPTOR ANTAGONISTS

- Physiological antagonism (e.g., epinephrine)
- Inhibit the release of histamine(e.g., cromolyn
- Pharmacological antagonism (antihistamines)

First Generation: Sedating Second Generation: Nonsedating

Classification

• <u>1st Generation:</u>

- Highly sedatives: Diphenhydramine, Dimenhydrate, Promethazine and Hydroxyzine
- Moderately: Pheniramine, Cyproheptadine, Meclizine, Buclizine and Cinnarizine
- Mild: Chlorpheniramine, Dexchlorpheniramine, Dimethindene, Cyclizine, Clemastine
- <u>2nd Generation</u>: Fexofenadine, Loratidine, Desloratidine, Cetirizine, Levocetrizine, Azelastine, Mizolastine, Ebastine and Rupatidine

Antihistaminics – Pharmacological actions

- Antagonism of Histamine:
 - Effectively block bronchoconstriction, contraction of intestinal and other smooth muscles and triple response
 - Low dose BP fall antagonized, but needs H₂ blockers to counter high dose fall in BP
 - Constriction of large vessels also antagonized
 - Gastric secretion unchanged
- Antiallergic action: Manifestations of *Type 1* hypersensitivity reactions – suppressed
 - Urticaria, itching, angioedema controlled
 - Anaphylactic fall in BP partially prevented
 - Asthma in human not affected (other mediators)

Antihistaminics – Pharmacological actions

CNS: Variable degree of CNS depression (sedation)– depends on individual drugs – ability to cross BBB and CNS:Peripheral H1

- individual drugs ability to cross BBB and CNS:Peripheral H1 receptor affinity
 - Inter-individual variation
 - Some Individuals: stimulant effects restlessness and
 - Insomnia etc. 2nd generation Non-sedating
 - Promethazine controls motion sickness (unknown mechanism) and vomiting of pregnancy
 - Promethazine controls rigidity and tremor in Parkinsonism
- Anticholinergic: Many are anticholinergic properties Promethazine highest – additive action with Atropine, TCAs
 etc.

Local anaesthetic: Pheniramine – membrane stabilizing effects –

LA – but not used (Irritation) – also antiarrhytmic
 BP: Fall in BP with IV injection (all) but not with Oral

Pharmacokinetics

- Classically lipid soluble, well absorbed orally and parenterally, metabolized in Liver and excreted in urine
 - Widely distributed in body and enters Brain and crosses BBB
 - Induce microsomal hepatic enzyme
 - Duration of action 4-6 Hours except
 - Cetirizine (C), loratadine (L), fexofenadine (F) well absorbed and are excreted mainly unmetabolized form
 - C and L are primarily excreted in the urine
 - F is primarily excreted in the feces

ADRs - H1- antgonists

- Frequent but mild inter-individual difference to different drugs
 - Sedation (Paradoxical Excitation in children), diminished alertness, loss to concentrate, dizziness, motor incordination, tendency to fall asleep – commonest – say no to motor vehicle driving and
 - _ operation
 - _ Alcohol synergises CNS effects
 - Tachydysrhythmias in overdose -

rare

- Allergic reactions with topical use (contact dermatitis)
- Peripheral antimuscarinic effects
 - Dryness of mouth, blurred Vision, constipation, urinary retention
 - Epigastric distress and headache
- Acute overdose: CNSexcitation, tremor hallucinations resemble Atropine poisoning - death due to respiratory failure and CVSfailure

Therapeutic uses

- Allergic reactions: Does not suppress AG:AB reaction but blocks release of histamine palliative
 - Itching, urticaria, seasonal hay fever, allergic conjunctivitis, angioedema of lips-eyelids etc. --- Laryngeal angioedema (Adrenaline)
 - Anaphylactic shock cannot be relied
 - Less effective in perennial vasomotor rhinitis, atopic dermatitis, and chronic dermatitis H₂ antagonist combination
 - Bronchial asthma no use 1) other mediators than histamine
 2) concentration at the site may not be sufficient
 - Not effective in humoral and cell mediated allergies
- Other conditions : (histamine) Insect bite, Ivy poisoning symptomatic relief
- Prunitides: Antipruritic Independent of antihistaminicaction
- Common cold: Symptomatic relief older ones preferred

Antihistaminics - Therapeutic uses – contd.

- Motion Sickness: Promethazine, diphenhydramine, dimenhydrinate and cyclizine – 1 hour befor journey
 - Promethazine morning sickness, drug induced and post operative vomiting and radiation vomiting
- Vertigo: Cinnarizine
- Preanaesthetic medication
- Cough: Chlorpheniraine maleate, diphenhydramine, promethazine etc.
- Parkinsonism: Promethazine anticholinergic and sedative
- Acute muscular dystonia: Parenteral Promethazine anti-dopamineric and antipsychotic drugs
- Sedative-hypnotic: Promethazine respiratory depression (not below 2 years) not preferred Hydroxyzine

2nd Generation antihistaminics

- 2rdgeneration (SGAs) after 1980s
 - Higher affinity for H1receptors: no anticholinergic side effects
 - Absence of CNSdepressant property
 - Additional antiallergic LT and PAF inhibition
- Advantages over 1stgeneration:
 - No psychomotor impairment driving etc. can be allowed
 - No subjective effect
 - No sleep induction
 - Do not potentiate BDZ and alcohol etc.

Individual Antihistaminics

- 2^eGeneration: in general, these agents have a much lower incidence of adverse effects than the first generation agents
- <u>Fexofenadine</u>: First non-sedating SGA- banned Torades de pointes ... when co-administered with CYP3A4 inhibitors – erythromycin, clarithromycin, ketoconazole and itraconazole etc.
 - Blocking of delayed rectifier K+channel in Heart at high doses
 - Terfenadine, Astimazole etc. banned
- Loratidine: Long acting, selective peripheral H1 blocker fast acting and lacks CNSdepression metabolized by CYP3A4 (to an active metabolite)
 - No interaction with macrolides and no arrhythmias
 - Uses: Urticaria and atopic dermatitis
- **Desloratidine:** Metabolite of Loratidine with its double potency

Individual Antihistaminics – contd.

- <u>Cetirizine</u>: Most commonly used these days (Levocetirizine same with lesser side effects)
 - High affinity for Peripheral H1 receptor, but poor BBBcross, but somnolence at high dose
 - Not metabolized in body, no cardiac action when given with macrolides etc.
 - Other anti-allergic action inhibits histamine and cytotoxic material release fro platelets and eosinophils
 - High skin concentration beneficial urticaria and atopic dermatitis
 - Longer half life once daily dosing
 - Uses: Upper respiratory allergies, pollinosis, urticaria and atopic dermatitis and seasonal asthma

Individual Antihistaminics - contd.

- <u>Azelastine</u>: H₁blocker with topical action also inhibitor of inflammatory response mediated by LTand PAF
 - Down regulation of Intracellular adhesion molecule-1 (ICAM-1) expression on nasal mucosa – Intranasal application
 - Half-life 24 hours but action lasts longer due to active metabolites
 - Used intranasal in seasonal and perennial rhinitis
- <u>Mizolastine</u>: Non-sedating effective in rhinitis and urticaria (noactive metabolite)
 - Half-life 8-10 Hours but single dosing
- **Ebastine:** Newer SGA converts to carbastine
 - Half-life: 10-16 Hrs and non-sedating
 - Used in nasal and skin allergies
 - Arrhythmogenic potential

H₂-receptor antagonists

Cimetidine, Ranitidine, Famotidine and Roxatidine

..... Will be discussed later - in "Drugs for Peptic Ulcer"

What to remember?

- Histamine Physiological Roles
- Histamine receptors locations and actions
- Important antihistaminics 1stgeneration and 2rd generation
- 1stgeneration Vs2rdgeneration
- Uses of antihistaminics
- Individual drugs Promethazine, Fexofenadie, Cetirizine, Azelastine and Ebastine

